Calcium-activated calcium permeability in parathyroid cells

Erik Gylfe, Rolf Larsson, Hans Johansson, Peter Nygren, Jonas Rastad*, Chris Wallfelt* and Göran Åkerström*

Department of Medical Cell Biology, University of Uppsala, BMC Box 571, S-751 23 Uppsala, Sweden and *Department of Surgery, University Hospital, S-751 85 Uppsala, Sweden

Received 2 June 1986

The Ca^{2+} receptor mechanism of the parathyroid cell was studied using La^{3+} as a probe. La^{3+} was found to bind to the cell surface without further penetration. Measurements of ^{45}Ca fluxes and the cytoplasmic Ca^{2+} concentration (Ca^{2+}) revealed a stimulatory component in the action of La^{3+} on Ca^{2+} permeability resulting in a rise in Ca^{2+} . These effects mimicked those obtained when raising the extracellular Ca^{2+} concentration from 0.5 to 3.0 mM, but the actions of La^{3+} and Ca^{2+} were not additive. The results suggest the existence of a novel Ca^{2+} permeability physiologically activated by binding of Ca^{2+} to an external receptor.

Ca²⁺ channel Ca²⁺ flux cytoplasmic Ca²⁺ Lanthanide Parathyroid hormone Secretion

1. INTRODUCTION

The physiological release of parathyroid hormone (PTH) is inhibited by a rise of extracellular Ca²⁺, an effect which is mediated by an increased cytoplasmic Ca²⁺ activity (Ca_i²⁺) [1-7]. Another unusual feature is that inhibition of secretion is associated with depolarization. A number of divalent cations and even trivalent lanthanum mimic the inhibitory [8] and depolarizing [9,10] actions of Ca²⁺, but the mechanisms involved in signal transduction are still largely unknown. We have suggested that Ca2+ entry occurs through channels activated by Ca2+ itself, and that this influx causes the depolarization [11]. Here, it is shown that, despite being restricted to the cell exterior, La3+ can activate Ca2+ influx and raise Ca_i²⁺ in parathyroid cells.

2. MATERIALS AND METHODS

Parathyroid glands were obtained from adult Sprague-Dawley rats or cattle within a few minutes after slaughter. The basal medium used in all experiments contained 5 mM Tris (pH 7.4), 139 mM NaCl, 4.7 mM KCl, 0.5 mM MgCl₂ and 0.5 mM CaCl₂. ⁴⁵Ca uptake and efflux were studied essentially as in [11,12]. To remove extracellular and superficially bound 45Ca in the uptake experiments, the tissue pieces were washed for 60 min at room temperature in a medium containing 2.0 mM LaCl₃. Prior to the use of an La³⁺-washing procedure, it was ascertained in experiments involving ⁴⁵Ca uptake and efflux as well as Ca_i²⁺ that at the reduced temperature La³⁺ effectively inhibits Ca²⁺ fluxes and that there is no stimulatory component (to be published). By determining the tissue content of ⁴⁵Ca after each efflux experiment, it was possible to express the results as fractional outflow rate (% of tissue content of 45Ca per min). The La³⁺ stimulation of ⁴⁵Ca efflux observed in the present study could not be attributed to displacement of ⁴⁵Ca from the plasma membrane, which is depleted of radioactivity after 60 min of perifusion in non-radioactive medium containing calcium. In identical perifusions at room temperature there was only inhibition (to be published). To monitor changes in Ca₁²⁺, suspensions of parathyroid cells were prepared from cattle and rats [6]. The cells were loaded with the Ca^{2+} indicators quin-2 (cattle) or fura-2 (rats) by incubations for 30-40 min at 37°C in medium containing 25 μ M quin-2 tetraacetoxy methyl ester or 1 μ M fura-2 tetraacetoxy methyl ester [6]. Suspensions of the cells from cattle were studied in a spectrofluorometer [5,6]. Only in experiments with no quenching ions present were calculations of Ca_i^{2+} values possible [13]. The fura-2-loaded rat cells were allowed to attach to the bottom of a culture chamber [14]. The chamber was placed within a thermostatted box (37°C) in an inverted Nikon

Diaphot microscope equipped for epifluorescence microfluorometry. Loss of intracellular fluorescence due to photobleaching or leakage of the indicators was negligible during the observation periods. The subcellular location of lanthanum was checked by electron microscopy. La³⁺ was found to bind to the cell surface without further penetration (not shown).

3. RESULTS

Table 1 shows the effects of La³⁺ on the uptake of ⁴⁵Ca. During 60 min of incubation, 0.5 or 2.0

Table 1

Effects of La³⁺ on ⁴⁵Ca uptake by the parathyroid gland

[La ³⁺] (mM)	[Ca ²⁺] (mM)	Incubation time (min)	⁴⁵ Ca uptake (mmol/kg dry tissue)	Effect of La ³⁺
0 (control)	0.5	15	0.54 ± 0.12 (10)	
0.02	0.5	15	0.70 ± 0.10 (10)	0.15 ± 0.05^{b} (10)
0 (control)	3.0	15	1.61 ± 0.27 (12)	, ,
0.02	3.0	15		-0.07 ± 0.24 (12)
0 (control)	0.5	60	0.91 ± 0.23 (11)	. ,
0.02	0.5	60	1.02 ± 0.18 (11)	0.11 ± 0.05^{a} (11)
0 (control)	0.5	60	1.19 ± 0.10 (10)	()
0.5	0.5	60		-0.54 ± 0.12^{c} (10)
2.0	0.5	60		-0.82 ± 0.19^{a} (5)
0 (control)	3.0	60	4.41 ± 0.34 (10)	ζ-/
0.5	3.0	60	` '	-2.08 ± 0.19^{c} (10)
2.0	3.0	60	, ,	$-2.98 \pm 0.36^{\circ}$ (5)

Pieces of rat parathyroid tissue were incubated for 15 or 60 min at different La³⁺ concentrations in medium containing 0.5 or 3.0 mM ⁴⁵Ca (40 and 6.7 Ci/mol, respectively). The intracellular radioactivity was measured after subsequent washing for 60 min at room temperature in a medium containing 2.0 mM LaCl₃. Results are given as means \pm SE for the number of experiments indicated within parentheses. ^ap>0.05; p>0.05;

mM La³⁺ inhibited the uptake of 0.5 or 3.0 mM ⁴⁵Ca. At 0.5 mM Ca²⁺ there was also a stimulatory component in the La³⁺ action on ⁴⁵Ca uptake observed when exposing the cells for 15 or 60 min to only 20 µM of the trivalent cation. The La³⁺-stimulated uptake of ⁴⁵Ca was not additive to that obtained by increasing the extracellular Ca²⁺ concentration from 0.5 to 3.0 mM. The dual actions of La3+ on Ca2+ permeability became particularly evident when studying the kinetics of ⁴⁵Ca efflux (fig. 1). The introduction of 0.5 mM La³⁺ into the perifusion medium thus resulted in transient stimulation of ⁴⁵Ca efflux followed by an inhibition which was reversed upon omission of La³⁺. The stimulatory phase was considerably diminished after increasing the Ca2+ concentration of the perifusion medium from 0.5 to 3.0 mM. Fig.2 shows the actions of Ca2+ and La3+ on Ca2+ as measured with quin-2 in suspensions of bovine parathyroid cells and with fura-2 in single rat parathyroid cells. In the quin-2 loaded cells a rise of the extracellular Ca2+ concentration from 0.5 to 3.0 mM resulted in an increased Cai2+. It is apparent that La³⁺ and Mn²⁺ promptly quenches the fluorescence from extracellular quin-2 and that on-

Fig.1. Effect of La³⁺ on ⁴⁵Ca efflux from the parathyroid gland. Pieces of rat parathyroid tissue were loaded with 3.0 mM ⁴⁵Ca (167 Ci/mol) for 90 min at 37°C in 100 μ l medium. The perifusion medium contained 0.5 (\odot) or 3.0 (\bullet) mM Ca²⁺ and was delivered at a rate of about 40 μ l/min. During the period indicated by the horizontal bar, 0.5 mM La³⁺ was also present. Results are given as means \pm SE for 5 experiments.

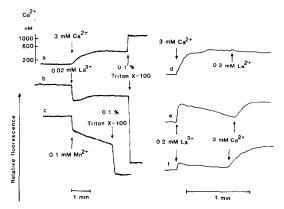


Fig. 2. Effects of La³⁺ on Ca₁²⁺ of parathyroid cells. In a-c, 5×10^6 quin-2-loaded and rinsed cells from cattle were suspended in 1.3 ml of medium containing 0.5 mM Ca²⁺. The cell suspensions were incubated with constant stirring at 37°C in a 1 cm cuvette placed in a spectrofluorometer with excitation and emission wavelengths set at 339 and 492 nm, respectively. In a, with no quenching ions present, it was possible to calculate Ca₁²⁺ values, which are shown. In d-f, single fura-2-loaded rat parathyroid cells were studied in a microscope fluorometer at 37°C with excitation at 339 nm and emission > 470 nm. The medium initially contained 0.5 (d,e) or ~0.07 (f) mM Ca²⁺. Note the different time scales for a-c and d-f.

ly Mn²⁺ reaches the intracellular indicator. In the case of La³⁺, the initial drop in fluorescence was thus followed by an increase reaching stability after 1 min. When single fura-2-loaded rat parathyroid cells were studied in a microscope fluorometer there was no interference from extracellular indicator. Both a rise of the Ca²⁺ concentration and addition of La³⁺ thus resulted only in increased fluorescence. The La³⁺-induced increase in Ca²⁺ apparently depended on the influx of Ca²⁺, since it was diminished after reducing the extracellular Ca²⁺ concentration from 0.5 to ~0.07 mM. Moreover, there was no additional effect of La³⁺ after raising extracellular Ca²⁺ to 3.0 mM.

4. DISCUSSION

In most secretory cells exocytosis is believed to be triggered by an increase in Ca_i^{2+} . Also in the parathyroid cells there is a stimulatory component in the action of Ca_i^{2+} , which becomes maximal

already at low Ca_i^{2+} values [6,7]. Nevertheless, there is no doubt that under physiological conditions the dominating effect of raised Ca_i^{2+} is inhibition of PTH secretion [2,4,6,7].

Mg²⁺ inhibition of PTH release has been found to be accompanied by increased Ca_i²⁺ depending on the presence of extracellular calcium [1,3]. Attempts have been made to explain the rises in Ca_i²⁺ after exposure to Ca²⁺ or Mg²⁺ by depolarization with subsequent influx of Ca²⁺ through voltagedependent channels [1]. However, although both cations depolarize the parathyroid cells [9,10], we have demonstrated an absence of voltagedependent Ca2+ channels [11], and K+ depolarization is, indeed, associated with decreased Ca_i²⁺ and enhanced secretion [4,6]. It is difficult to study whether divalent cations other than Mg²⁺ inhibit PTH release indirectly via Ca²⁺ or if they interact with the exocytotic machinery after entering the cells. A major problem is that the ions interfere with the measurements of Cai+, by reacting with intracellular Ca2+ indicators like quin-2 and fura-2.

In contrast to divalent cations the trivalent lanthanides are generally restricted to the extracellular space [15], and it was apparent from our electron microscopic controls and the Ca_i²⁺ data that this is also the case for parathyroid cells. Since La³⁺ shares the ability of divalent cations to depolarize the parathyroid cells [9] and inhibit PTH release [8], it can be used as a probe for testing our proposal that there is a Ca²⁺ permeability activated by external calcium [11]. La³⁺ has been widely used to displace Ca²⁺ from binding sites, to block Ca²⁺ fluxes and to inhibit Ca²⁺-dependent processes [15]. In accordance with such actions a high concentration of La³⁺ (5 mM) was found to inhibit ⁴⁵Ca uptake by parathyroid cells incubated at different concentrations of Ca²⁺ for 15 min [16]. Inhibition of Ca2+ permeability was also apparent from the present measurements of 45Ca uptake and efflux. However, there was a transient stimulatory component in the action of La³⁺ which became the dominating effect after reduction of the extracellular La³⁺ concentration to the micromolar range. The La³⁺ stimulation of Ca²⁺ permeability resulted in an increase in Cai+, dependent on influx of Ca²⁺. Moreover, it was evident from the measurements of ⁴⁵Ca uptake and efflux as well as Ca_i²⁺ that the stimulatory actions of Ca²⁺ and La³⁺ on Ca²⁺ permeability were not additive, suggesting that the two cations operate through a common mechanism.

Exposure of parathyroid cells to low concentrations of La3+ mimicked the effects of raising extracellular Ca2+ within the physiological control range for PTH release, both with regard to 45Ca fluxes [11] and Ca_i²⁺. Considering that La³⁺ is restricted to the exterior of the parathyroid cells, the present data strongly support the concept of a Ca²⁺ permeability activated by binding of Ca²⁺ to an external receptor. This Ca2+-activated Ca2+ permeability is not necessarily unique to parathyroid cells. It can even be expected to occur in other cells with a Ca²⁺-sensing function, like the calcitonin-secreting cells and possibly those releasing renin [17] and glucagon [18]. Also cell types dominated by other Ca²⁺ channels might have Ca²⁺-activated Ca²⁺ permeability. La³⁺ has thus been found to stimulate Ca2+-dependent release of adrenomedullary catecholamine [19] and pancreatic amylase [20] as well as to enhance 45Ca uptake into the pancreatic acinar cells [20,21]. It is interesting to note that verapamil under different experimental conditions either enhanced or slightly diminished the La3+-induced release catecholamine [19]. We have previously shown that this 'calcium antagonist' and its derivative D-600 can both stimulate and inhibit the Ca²⁺ permeability of the parathyroid cells depending on the extracellular Ca²⁺ concentration [6].

ACKNOWLEDGEMENTS

This study was supported by the Swedish Medical Research Council (12x-6240, 19x-6264). The skilful technical assistance of Birgitta Ryberg and Carina Hejdström is gratefully acknowledged.

REFERENCES

- [1] Shoback, D., Thatcher, J., Leombruno, R. and Brown, E. (1983) Endocrinology 113, 424-426.
- [2] Larsson, R., Wallfelt, C., Abrahamsson, H., Gylfe, E., Ljunghall, S., Rastad, J., Rorsman, P., Wide, L. and Åkerström, G. (1984) Biosci. Rep. 4, 909-915.
- [3] Shoback, D.M., Thatcher, J.G. and Brown, E.M. (1984) Mol. Cell. Endocrinol. 38, 179-186.
- [4] Shoback, D.M. and Brown, E.M. (1984) Biochem. Biophys. Res. Commun. 123, 684-690.

- [5] LeBoff, M.S., Shoback, D., Brown, E.M., Thatcher, J., Leombruno, R., Beadudoin, D., Henry, M., Wilson, R., Pallotta, J., Marynick, S., Stock, J. and Leight, G. (1985) J. Clin. Invest. 75, 49-57.
- [6] Larsson, R., Åkerström, G., Gylfe, E., Johansson, H., Ljunghall, S., Rastad, J. and Wallfelt, C. (1985) Biochim. Biophys. Acta 847, 263-269.
- [7] Larsson, R., Wallfelt, C., Åkerström, G., Ljunghall, S., Rastad, J. and Gylfe, E. (1986) Mol. Cell. Endocrinol., in press.
- [8] Wallace, J. and Scarpa, A. (1982) J. Biol. Chem. 257, 10613-10616.
- [9] Bruce, B.R. and Anderson, N.C. jr (1979) Am. J. Physiol. 236, C15-C26.
- [10] Lopez-Barneo, J. and Armstrong, C.M. (1983) J. Gen. Physiol. 82, 269-294.
- [11] Wallfelt, C., Larsson, R., Johansson, H., Rastad, J., Åkerström, G., Ljunghall, S. and Gylfe, E. (1985) Acta Physiol. Scand. 124, 239-245.
- [12] Gylfe, E. and Hellman, B. (1978) Biochim. Biophys. Acta 538, 249-257.

- [13] Hesketh, T.R., Smith, G.A., Moore, J.P., Taylor, M.V. and Metcalfe, J.C. (1983) J. Biol. Chem. 258, 4876-4882.
- [14] Sykes, J.A. and Moore, E.B. (1959) Proc. Soc. Exp. Biol. Med. 100, 125-127.
- [15] Weiss, G.B. (1974) Annu. Rev. Pharmacol. 14, 343-354.
- [16] Glick, D.M. and Mockel, J. (1980) Horm. Metab. Res. 12, 475-480.
- [17] Churchill, P.C. (1985) Am. J. Physiol. 249, F175-F184.
- [18] Leclercq-Meyer, V. and Malaisse, W.J. (1983) in: Glucagon II, Handbook of Experimental Pharmacology 66/II (Lefebvre, P.J. ed.) pp. 59-74, Springer, Berlin.
- [19] Ng, D., Shanbaky, N.M. and Borowitz, J.L. (1982) Res. Commun. Chem. Path. Pharmacol. 37, 259-265.
- [20] Chandler, D.E. and Williams, J.A. (1974) J. Physiol. 243, 831-846.
- [21] Wakasugi, H., Stolze, H., Haase, W. and Schulz, I. (1981) Am. J. Physiol. 240, G281-G289.